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Abstract— In this paper, simple methods for crack identification 
in steel plates and their classification based on the frame based 
frequency domain features is presented. Based upon the 
boundary conditions and experimental modal analysis, two 
simple experimental methods are designed to measure the 
vibration at different positions of the steel plate. The plate is 
excited by an impulse signal and made to vibrate. The 
propagated vibration signals are then recorded. The signal is 
transformed into frequency domain by computing the Discrete 
Fourier Transformation (DFT). The frequency spectral bands 
are identified and the spectral energy is extracted as features. 
The condition of the steel plate namely healthy or faulty is 
associated with the extracted features to form a final feature 
vector. Two simple neural network models were developed, 
trained using Backpropagation (BP) and Radial Basis Function 
(RBF) algorithms. The results and the effectiveness of the system 
are validated through simulation. 
 
Keywords— Vibration Signal, Damage Detection, Experimental 
Modal Analysis, Discrete Fourier Transformation, Spectral 
Energy, Backpropagation, Radial Basis Function Network. 

I. INTRODUCTION 
Health monitoring of vibrating structure in machines is an 

important task in industries. Damages can put human safety at 
risk, cause long term machine downtimes, interruption in the 
production and subsequently increase the production cost. 
Early damage detection and possible location of the faults 
from the vibration measurements is one of the primary tasks 
of condition monitoring. Condition monitoring enables early 
detection of faults. In recent years there has been an 
increasing interest in the development of online condition 
monitoring systems due to the success in several applications. 
Structural Health Monitoring (SHM) is an inverse problem 
which mainly concentrates on damage existence, damage 
localization and damage extent measurement. The purpose of 
SHM is to ensure high reliability and less maintenance cost 
throughout the lifetime of the structure. A damage condition 
of a steel plate can be detected by the vibration signal 
propagating through it, when it is subjected to an impulse 
force. There are many technologies that have been developed 
to detect the faults in a gear box, bridge structures, aircraft and 
bearings with the aid of vibration signals. The existence of a 
crack in a steel plate reduces the stiffness of the plate and this 
reduction in stiffness ultimately reduces the natural 
frequencies. Further, this also changes the mode shape of 
vibration. An analysis of the propagation of the vibration 
signal makes it possible to detect the fault non-destructively. 

An extensive literature review of the state of art vibration 
analysis and damage detection has been published by S.W. 
Doebling [1]. A detailed survey of the state of art in the 
damage detection field using modal analysis has been 
presented by Richardson [2]. A detailed review of the 
different vibration and acoustic methods such as the time and 
frequency domains, acoustic emission techniques are 
presented by Tandon and Nakra [3]. Using fracture mechanics 
method, Dimarogonas [4] and Anifactis [5] computed the 
equivalent stiffness and developed a model for crack detection 
in beams. An experimental technique to estimate the location 
and depth of a crack in a beam has been developed by Adams 
and Cawley [6]. The methodology of crack detection based on 
natural frequency changes has been closely studied by Shen 
and Pierre [7]. An unidentified damage in steel plates can 
degrade the lifespan of the product. To ensure long life, the 
condition of the steel plate needs to be monitored. 
Nondestructive vibration testing methods for damage 
identification gains more importance in the recent past.  

In this work, two types of experimental arrangements are 
proposed based on the boundary conditions. The vibration 
signals are captured from the stainless steel plate in pre and 
post damage conditions. The vibration signal is transformed 
into frequency domain by computing the Discrete Fourier 
Transformation (DFT). The frequency spectral bands are 
identified and the spectral energies are extracted as features. 
These extracted features are then associated with the healthy 
or faulty condition of the steel plate. Multilayer Perceptron 
network model and Radial basis function network model are 
developed and the features are trained and tested. The results 
obtained are compared. This paper, is organized in the 
following subsections; the experimental design, feature 
extraction and the artificial neural networks for classification 
are explained in the corresponding subsections.  

II. EXPERIMENTAL DESIGN AND DATA ACQUISITION 

A. Data Acquisition System (DAQ) 
Measurements of the vibration signals are acquired using 

a LMS SCADAS Mobile SCM01 Data Acquisition System. 
This system has 4 input channels and Ethernet connectivity. 
The features supported are: a maximum sampling frequency 
range of up to 102.4 kHz per channel, 105 dB signal to noise 
ratio and a high speed Ethernet connection. The DAQ system 
is monitored through the LMS Test Lab software which 
supports a wide range of applications. 
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B. Vibration and Pressure Transducers 
Accelerometers are Vibration transducers which possess 

high natural frequencies compared to the vibration to be 
measured and indicate acceleration [8]. The piezoelectric 
accelerometers are widely preferred over the digital 
accelerometers in many applications due to its high accuracy 
and sensitivity. The general purpose Piezoelectric 
accelerometer with an input sensitivity of 10 / 31.6 / 100mV/g 
(g = 9.82 m/s2) and a resonant frequency of 28 kHz is used in 
this experimental work. Force transducers are used to produce 
impulse forces and commonly used for impact tests. The 
general purpose force transducers or so called impact hammer 
(Dytran 5800B2 - 50LbF range, 100 mV/LbF) is used in this 
research work. 

C. Experimental Setup 
A clean 2B Stainless steel plate of length 60 cms, breadth 

24 cms and thickness 0.12 cms are subjected for this testing. 
The steel plate is divided into 6 rows and 15 columns forming 
a grid structure of cell size 4x4 cm2 as shown in the figure 1. 
The cells of 6 rows and 6 columns are numbered sequentially 
as represented in Figure 2. Two simple experimental test 
setups are fabricated to test and evaluate the condition of the 
steel structure using Non Destructive Experimental Modal 
Analysis (NDEMA). 

 
Fig.1 2B Stainless Steel Plate divided into cells 

 
Fig.2 Grid formation of the steel structure 

D. Test Setup 1.Case A 
An aluminium test rig of length 90 cms, breadth 60 cms 

and height 3 cms is fabricated. The rectangular stainless steel 
plate of mass 1.2 kilogram is freely placed over the test setup. 
The plate is simply supported by two thin threads tied across 
the test bench 30 cms apart from each other as shown in 
Figure 3a. The test setup is placed on a rubber mattress to 
avoid external vibrations. 

 

 

E. Test Setup 2 Case B 
An Iron swing frame setup of height 5 feet and width 3 

feet is constructed. The Stainless Steel plate is clamped and 
hinged between the two holders while the other end of the 
steel plate is set free as shown in the Figure 3b. The distance 
between the two holders is 40 cms.  

F. Natural Frequency estimation of Steel Plates 
The natural frequency or Eigen frequency of a system is 

the frequency at which the system oscillates. Any material 
possesses its own natural frequency. The natural frequency is 
a physical property which subsequently gets affected when 
there is a damage caused to the system. The fundamental 
frequency estimation becomes important since the test object 
is subjected to nondestructive experimental modal testing. The 
sample stainless steel plate has the following values: Poisson 
ratio (µ) = 0.3, Young’s modulus (E) = 210 N/mm2, Length (l) 
= 60x10-1m and Thickness (h) = 1.2x10-2 m. The natural 
frequency can be computed [9] using the equation (2) 

     (1) 

     (2) 

where  is the stiffness of the plate, (  = 1750 Nm) and   is 
the calculated natural frequency of the sample steel plate, ( = 
41.316 Hz) 

 
Fig.3a. Experimental Test Setup of Steel Plate Simply Supported 

G. Data Capturing Protocol and Procedure 
Based on the physical properties of the steel plate such as 

natural frequency, mode shape, the sampling frequency is set 
to 4 kHz [16]. The impact hammer is connected to the first 
ICP channel of the Data Acquisition System. Three general 
purpose mono axis accelerometers are connected to the second, 
third and fourth ICP channels respectively. An impulse force 
is generated by striking the impact hammer on a nodal point 
on the steel plate. The vibration generated due to the external 
impulse force is propagated throughout the plate. The level of 
vibration at the nearest three nodal points is measured using 
the accelerometers. 
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Fig.3b. Experimental Test Setup of Steel Plate Hinged one side 

The placement of the accelerometers and the location of 
strike are now changed at the same cell as represent are 
depicted in the Figures 5, 6, 7 and 8. The impulse force and 
the level of vibration at the nearest locations are recorded for 
20 seconds at a sampling rate of 4 kHz. This procedure is 
executed in all the 36 cells and 10 such trials are applied 
during the healthy condition of the stainless steel plate.  

Damages in the form of micro holes of dimensions 0.1 – 
0.5 microns are created randomly on the surface of the 
stainless steel plate using drill heads within the cells. The 
damages are made in all the 36 cells. The vibration signal 
from the steel plate during the fault condition is captured 
using the same procedure described above. These captured 
signals are in default file format ‘.xdf’ of the Data Acquisition 
System, which are then exported as Microsoft ‘.wav’ file 
format for further analysis through MATLAB. 

 
Fig.4.Location of Strike – Protocol 1 

 
Fig.5.Location of Strike – Protocol 2 

 
Fig.6.Location of Strike – Protocol 3 

 
Fig.7.Location of Strike – Protocol 4 

III. DATA PREPROCESSING 
In the time domain signal recorded during the data 

acquisition process, the time of the strike of the impact 
hammer is a variable factor. The signal is recorded for 20 
seconds, whereas the location of the occurrence of the peak 
falls anywhere before the first 5 seconds.  In order to provide 
consistency throughout the data analysis, the vibration signal 
recorded is clipped to 15 seconds leaving 1 second before the 
occurrence of the peak and 14 seconds after the peak. The 
final length of clipped signal is 60000 samples at a sampling 
frequency of 4000 samples per second. The figure shows the 
clipped signal during the data analysis. 

 
Fig.8.Typical Clipped Vibration Signal 

IV. FEATURE EXTRACTION 

A. Frequency Domain DFT Bands Feature Extraction 
The vibration signal recorded represents the time 

information. To extract the frequency information, the signal 
is then transformed into frequency domain by computing the 
Discrete Fourier Transformation (DFT) using the Fast Fourier 
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Transformation (FFT) algorithm for faster computation. The 
typical frequency spectrum of a vibration channel is shown in 
Figure 9. From the frequency spectrum, it is observed that the 
frequency components arise between a range of 0Hz - 250 Hz. 
The frequency spectrum of a vibration channel is depicted in 
Figure 9. The Spectral Energy bands are identified. The peak 
spectral energies are calculated. The frequency band with a 
threshold range of spectral energies above 0.2 times the peak 
spectral energy before and after the occurrence of the peak is 
considered. The frequency spectrum is grouped into band of 
frequencies as presented in the Table 1 and Table 2. 15 
frequency bands are formed per each vibration signal in Case 
A that forms 45 final feature vectors. 18 frequency bands are 
formed per each vibration signal that makes 54 final feature 
vectors for Case B. 

TABLE 1 
DFT Frequency Band - CASE A SIMPLY SUPPORTED 

Band No Frequency Range 
Band 1 4Hz - 9Hz 
Band 2 14Hz - 20Hz 
Band 3 23Hz - 27Hz 
Band 4 32Hz - 38Hz 
Band 5 42Hz - 49Hz 
Band 6 59Hz - 70Hz 
Band 7 84Hz - 95Hz 
Band 8 96Hz -107Hz 
Band 9 111Hz - 116Hz 

Band 10 128Hz - 133Hz 
Band 11 135Hz - 150Hz 
Band 12 160Hz - 170Hz 
Band 13 174Hz - 175Hz   
Band 14 187Hz - 195Hz 
Band 15 200Hz - 230Hz 

TABLE 2 
DFT Frequency Band - CASE B.HINGED FREE 

Band No Frequency Range 
Band 1 6Hz - 11Hz 
Band 2 15Hz - 19Hz 
Band 3 22Hz - 28Hz 
Band 4 35Hz - 49Hz 
Band 5 52Hz - 58Hz 
Band 6 65Hz -75Hz 
Band 7 75Hz - 81Hz 
Band 8 88Hz -101Hz 
Band 9 101Hz - 114Hz 

Band 10 114Hz - 127Hz 
Band 11 130Hz - 144Hz 
Band 12 144Hz - 152Hz 
Band 13 153Hz - 166Hz 
Band 14 166Hz - 176Hz 
Band 15 180Hz - 202Hz 
Band 16 204Hz - 223Hz 
Band 17 228Hz – 238Hz 
Band 18 238Hz – 250Hz 

The frequency band is represented using the equation 3. 

   (3) 

where i = 1,2,3,…,M 

N = length of each frequency band 

M = number of frequency bands 

 
Fig 9 DFT Frequency Spectrum 

V. DATA POST PROCESSING 
The frequency band features extracted from the three 

vibration channels are associated with the condition of the 
steel plate. In Case A the 45 input features are associated to 
one target pattern. In Case B the 54 input features are 
associated to one target pattern. The feature matrix is rescaled 
to a definite range using a normalization criterion to improve 
speed and reduce complexity during classification. In this 
research work softmax normalization is used [18]. The data is 
then randomized and the training and testing database are 
formulated. 

VI.   CLASSIFICATION USING ARTIFICIAL NEURAL 
NETWORK 

A. Artificial Neural Network 
An artificial neural network is an information processing 

system that has been developed as a generalization of the 
mathematical model for human cognition [17]. Artificial 
Neural Networks (ANN) provides alternative form of 
computing that attempts to mimic the functionality of the 
brain. Two Neural network models Multi-layer Perceptron 
(MLP) and Radial Basis Function (RBF) are modelled and 
trained using the features extracted from the vibration signal.  

B. Multilayer Perceptron Neural Network 
A simple MLP neural network model is developed and 

trained using Backpropagation learning procedure in this work. 
The MLP network consists of 3 layers, with one input layer, 
one hidden layer and an output layer. The neural network 
model consists of an input layer with input neurons based on 
the number of DFT frequency band features extracted. It 
contains a hidden layer and an output layer associated to the 
target pattern. In the MLP neural network, the total mean 
squared error is backpropagated to the input neurons so that 
the weight vectors are adjusted to minimize the error gradient. 
A sum of 60 percent, 70 percent and 80 percent of the whole 
database is considered for training the neural network and 100 
percent data is used to test the neural network. The ‘newff’ 
function with the ‘trainlm’ – Levenberg Marqurett learning 
method is used to train the neural network. The parameters 
used for training and the results of the mean epoch and 
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classification accuracy are tabulated for Case A and Case B 
and shown in Table 3 and Table 4 respectively.  

TABLE 3 
MLP TRAINING RESULTS - SIMPLY SUPPORTED 

Input Neurons       : 45 
Output Neurons    : 1 
Hidden Neurons    : 25 
Maximum Epoch  : 150 

Training Tolerance          : 0.001 
Testing Tolerance        : 0.1 
Testing Samples        : 2880 
Activation Function         : Sigmoidal 

  
Training Samples 

60 %  = 1728 70 %  = 2015 80 %  = 2304 

Trial Mean 
Epoch CR (%) Mean 

Epoch CR (%) Mean 
Epoch CR (%) 

1 30 95.06 43 96.66 13 98.19 
2 36 94.13 34 96.11 73 97.91 
3 52 94.72 52 96.94 33 98.26 
4 36 95.31 47 97.46 35 98.22 
5 39 95.27 68 96.97 42 98.47 
6 113 93.75 39 96.84 75 98.19 
7 37 95.03 33 96.70 47 98.43 
8 44 94.61 76 96.70 47 98.47 
9 29 94.82 41 97.01 42 98.02 

10 29 95.10 42 96.80 39 98.36 
Mean - 94.78 - 96.82 - 98.25 

C. Radial Basis Function Network 
The RBF Neural Network consists of three layers. The 

first layer being the input layer which contain the extracted 
features as input vectors. The condition of the steel plate 
corresponds to the output vector. The hidden neurons are 
computed using the radial basis function. The network is 
trained using the inbuilt radial basis neural network ‘newrb’ 
function present in MATLAB. The spread of the Gaussian 
distribution is derived experimentally. The network is trained 
using 60, 70 and 80 percent of samples and tested using 100 
percent samples by simulation. The parameters used for 
training and the results of the hidden neurons and 
classification accuracy are tabulated for Case A and Case B 
are shown in Table 5 and Table 6 respectively.  

V. RESULTS AND DISCUSSION 
To evaluate the effectiveness of the network model, the 

confusion matrices for the MLP and RBF network are 
calculated. The MLP network model has the best sensitivity 
and specificity values as 99.72 percent and 99.79 percent for 
Case A and 99.93 percent sensitivity and 99.86 percent 
specificity for Case B. The RBF network model has the best 
sensitivity and specificity values as 98.99 percent and 90.01 
percent for Case A and 99.24 percent sensitivity and 98.38 
percent specificity for Case B. From the neural network 
training results presented in Tables 3 - 6, it is observed that 
the MLP network trained using DFT spectral energy features 
has a better classification accuracy compared to the RBF 
network model. 

TABLE 4 
MLP TRAINING RESULTS–HINGED FREE 

Input Neurons      : 54 
Output Neurons   : 1 
Hidden Neurons   : 25 
Maximum Epoch : 100 

Training Tolerance     : 0.001 
Testing Tolerance       : 0.1 
Testing Samples       : 2880 
Activation Function    : Sigmoidal 

  
Training Samples 

60 %  = 1728 70 %  = 2015 80 %  = 2304 

Trial Mean 
Epoch CR (%) Mean 

Epoch CR (%) Mean 
Epoch CR (%) 

1 17 94.44 23 95.76 20 98.12 
2 23 94.86 23 96.25 20 98.22 
3 16 94.93 20 96.45 19 98.40 
4 14 94.23 20 96.73 37 98.26 
5 23 94.40 31 96.45 22 97.70 
6 30 94.20 20 96.73 35 97.60 
7 25 94.27 26 96.25 31 97.50 
8 20 95.00 22 96.42 29 97.98 
9 28 94.51 28 96.25 18 97.43 

10 27 95.51 20 95.59 34 98.26 
Mean - 96.46 - 96.28 - 97.95 

TABLE 5 
RBF TRAINING RESULTS - SIMPLY SUPPORTED 

Input Neurons
Output Neurons   

45 
1 

Testing Samples
Training Goal

Testing Goal   

2880 
0.01 
0.1 

 60 %  = 1728 
samples 

70 %  = 2015 
samples 

80 %  = 2304 
samples 

Spread HN CR (%) HN CR (%) HN CR (%) 

0.1 425 70.55 425 85.42 425 90.72 

TABLE 6 
RBF TRAINING RESULTS - HINGED FREE 

Input Neurons
Output Neurons   

54 
1 

Testing Samples
Training Goal

Testing Goal   

2880 
0.01 
0.1 

 60 %  = 1728 
samples 

70 %  = 2015 
samples 

80 %  = 2304 
samples 

Spread HN CR (%) HN CR (%) HN CR (%) 

0.1 450 82.4 450 89.25 450 91.47 

VI. CONCLUSION AND FUTURE WORK 

This paper presented two simple experimental methods 
for the nondestructive vibration based damage detection. DFT 
spectral bands are identified and the spectral energies are 
extracted from the vibration signals. The features are 
associated with the condition of the steel plate to form the 
final feature matrix. Two neural network models are 
developed and trained using Backpropagation and Radial 
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Basis Function algorithms. The results show that the 
identification and use of the DFT spectral energy band 
features contribute towards a better classification of the 
condition of the steel plate. Furthermore, RBF network can be 
effectively used in the diagnosis of condition of the steel plate. 
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