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    1Abstract- This paper presents detection of damages in steel 
plates using time domain and frequency domain features are 
presented. A simple experimental model is developed based on two 
dissimilar boundary conditions to hold the steel plate. Experimental 
methods are developed to excite the steel plate at one corner of the 
cell and measure the responsive vibration signal at the adjacent 
coordinates of the cell. The vibration signal is then blocked into 
number of frames of definitive size. Feature extraction algorithms 
are developed to extract the following features namely: frame 
energy based features, DCT peak moment, change in DCT peak 
moment, DCT peak value derivative and DCT peak area. The 
feature vectors are then associated with the condition of the steel 
plate. A simple radial basis function network is modeled and 
trained using the extracted features to classify the condition of the 
steel plate using 60%, 70% and 80% training samples and tested 
with 100% testing samples. The performance of the network is 
validated using normal and Falhman testing method and the results 
are tabulated. 
Keywords: Vibration signal, Experimental modal analysis, damage 
detection, neural networks, radial basis function, frame energy, 
discrete cosine transformation.  
 

I. INTRODUCTION 
Health monitoring of vibrating structure in machines is 

an important task in industries. Damages can put human 
safety at risk, cause long term machine downtimes, 
interruption in the production and subsequently increase the 
production cost. Early damage detection and possible 
location of the faults from the vibration measurements is one 
of the primary tasks of condition monitoring. Condition 
monitoring enables early detection of faults. In recent years 
there has been an increasing interest in the development of 
online condition monitoring systems due to the success in 
several applications. Structural Health Monitoring (SHM) is 
an inverse problem which mainly concentrates on damage 
existence, damage localization and damage extent 
measurement. The purpose of SHM is to ensure high 
reliability and less maintenance cost throughout the lifetime 
of the structure. A damage condition of a steel plate can be 
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detected by the vibration signal propagating through it, when 
it is subjected to an impulse force. There are many 
technologies that have been developed to detect the faults in 
a gear box, bridge structures, aircraft and bearings with the 
aid of vibration signals. The existence of a crack in a steel 
plate reduces the stiffness of the plate and this reduction in 
stiffness ultimately reduces the natural frequencies. Further, 
this also changes the mode shape of vibration. An analysis of 
the propagation of the vibration signal makes it possible to 
detect the fault non-destructively. 

An extensive literature review of the state of art 
vibration analysis and damage detection has been published 
by S.W. Doebling [1]. A detailed survey of the state of art in 
the damage detection field using modal analysis has been 
presented by Richardson [2]. A detailed review of the 
different vibration and acoustic methods such as the time 
and frequency domains, acoustic emission techniques are 
presented by Tandon and Nakra [3]. Using fracture 
mechanics method, Dimarogonas [4] and Anifactis [5] 
computed the equivalent stiffness and developed a model for 
crack detection in beams. An experimental technique to 
estimate the location and depth of a crack in a beam has 
been developed by Adams and Cawley [6]. An unidentified 
damage in steel plates can degrade the lifespan of the 
product. To ensure long life, the condition of the steel plate 
needs to be monitored. Nondestructive vibration testing 
methods for damage identification gains more importance in 
the recent past.  

In this work, two types of experimental arrangements 
are proposed based on the boundary conditions. The 
vibration signals are captured from the stainless steel plate in 
pre and post damage conditions. The vibration signal is 
processed to extract features namely frame energy based 
statistical features and discrete cosine transformation 
features. These extracted features are then associated with 
the healthy or faulty condition of the steel plate. Radial basis 
function network models are developed and trained using the 
extracted features. The performance of the network is 
validated and the results are tabulated. This paper, is 
organized in the following subsections; the experimental 
design, feature extraction and the artificial neural networks 
for classification are explained in the corresponding 
subsections.  

 
II. EXPERIMENTAL ARRANGEMENT 

2.1. Data acquisition system 
 Measurements of the vibration signals are acquired 
using a LMS SCADAS Mobile SCM01 Data Acquisition 
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System. This system has 4 input channels and Ethernet 
connectivity. The features supported are: a maximum 
sampling frequency range of up to 102.4 kHz per channel, 
105 dB signal to noise ratio and a high speed Ethernet 
connection. The DAQ system is monitored through the LMS 
Test Lab software which supports a wide range of 
applications. 
2.2. Vibration and pressure transducers 
 Accelerometers are Vibration transducers which possess 
high natural frequencies compared to the vibration to be 
measured and indicate acceleration. The piezoelectric 
accelerometers are widely preferred over the digital 
accelerometers in many applications due to its high accuracy 
and sensitivity. The general purpose Piezoelectric 
accelerometer with an input sensitivity of 10 / 31.6 / 
100mV/g (g = 9.82 m/s2) and a resonant frequency of 28 
kHz is used in this experimental work. Force transducers are 
used to produce impulse forces and commonly used for 
impact tests. The general purpose force transducers or so 
called impact hammer (Dytran 5800B2 - 50LbF range, 100 
mV/LbF) is used in this research work. 
2.3. Experimental setup 
 A clean 2B Stainless steel plate of length 60 cms, 
breadth 24 cms and thickness 0.12 cms are subjected for this 
testing. The steel plate is divided into 6 rows and 15 
columns forming a grid structure of cell size 4x4 cm2 as 
shown in the Figure 1.1. The cells of 6 rows and 6 columns 
are numbered sequentially as represented in Figure 1.2. Two 
simple experimental test setups are fabricated to test and 
evaluate the condition of the steel structure using 
Nondestructive Experimental Modal Analysis (NDEMA). 

 

 
Figure.1 1 Stainless Steel Plate divided into cells 

 
Figure.1.2 Grid formation of the steel structure 

2.4. Simply supported steel plate 
An aluminium test rig of length 90 cms, breadth 60 

cms and height 3 cms is fabricated. The rectangular stainless 
steel plate of mass 1.2 kilogram is freely placed over the test 
setup. The plate is simply supported by two thin threads tied 
across the test bench 30 cms apart from each other as shown 

in Figure 1.3. The test setup is placed on a rubber mattress to 
avoid external vibrations. 

 
Figure.1.3. Experimental Test Setup of Steel Plate Simply Supported 

2.5. Fixed free steel plate 
An Iron swing frame setup of height 5 feet and 

width 3 feet is constructed. The Stainless Steel plate is 
clamped and hinged between the two holders while the other 
end of the steel plate is set free as shown in the Figure 1.4. 
The distance between the two holders is 40 cms.  

 
Figure.1.4. Experimental Test Setup of Steel Plate Hinged one side 

2.7. Data capturing protocol design 
 Based on the physical properties of the steel plate such 
as natural frequency, mode shape, the sampling frequency is 
set to 4 kHz [16]. The impact hammer is connected to the 
first ICP channel of the Data Acquisition System. Three 
general purpose mono axis accelerometers are connected to 
the second, third and fourth ICP channels respectively. An 
impulse force is generated by striking the impact hammer on 
a nodal point on the steel plate. The vibration generated due 
to the external impulse force is propagated throughout the 
plate. The level of vibration at the nearest three nodal points 
is measured using the accelerometers. 
 The placement of the accelerometers and the location of 
strike are now changed at the same cell as represent are 
depicted in the Figures 1.5, 1.6, 1.7 and 1.8 respectively. The 
impulse force and the level of vibration at the nearest 
locations are recorded for 20 seconds at a sampling rate of 4 
kHz [7]. This procedure is executed in all the 36 cells and 10 
such trials are applied during the healthy condition of the 
stainless steel plate.  
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 Small drilled holes of diameter between 512 μm  to 
1852 μm and depth of 100 μm  are manually made using 
drill bits on the surface of the steel plate. The damages are 
made in all the 36 cells which constitute 144 possible 
locations. The vibration signal from the steel plate during the 
fault condition is captured using the same procedure. The 
experiment is repeated and the vibration signal is obtained 
from 10 steel plates of similar dimensions. Thus 1440 
samples are captured and recorded for normal conditions. 
Similarly 1440 samples for fault conditions including 
minimum, medium and maximum damages are collected 
after drilling small holes on the steel plates. The 
experimental data collected using simply supported and 
fixed free method comprises of 2880 samples each 
respectively. 
 These captured signals are in default file format ‘.xdf’ 
of the Data acquisition system, which are then exported as 
Microsoft ‘.wav’ file format for further analysis through 
MATLAB. 

 
Figure.1.5.Location of Strike – Protocol 1 

 
Figure.1.6.Location of Strike – Protocol 2 

 
Figure.1.7.Location of Strike – Protocol 3 

 
Figure.1.8.Location of Strike – Protocol 4 

 
III. FEATURE EXTRACTION 

 The vibration response signal recorded from the 
accelerometers contains the time verses amplitude 
information for a time stamp of 20 seconds. In this research, 
the features from the vibration signals are extracted in both 
time and frequency domains. Algorithms are developed to 
extract frame energy based features and discrete cosine 
transformation based features. The feature extraction process 
is explained in suitable subsections of this paper. 
3.1 Frame blocking 
 To effectively study the features, the vibration signal is 
decomposed into definite frames of size 1024. The vibration 
signal is recorded for 20 seconds while the time of strike of 
the impact hammer is inconsistent. Hence to maintain 
uniformity of the signal length, the signal corresponding to 
15 seconds is extracted using the signal trimming procedure. 
3.1.1. Signal trimming procedure 
 The transient vibration signal is recorded for 20 seconds 
during the impact testing process. The time ‘tp’ 
corresponding to the first peak magnitude ‘vp’ is identified. 
The vibration signal recorded from (tp – 0.5) seconds to (tp + 
14.5) seconds are extracted. The period of the resulting 
extracted signal is 15 seconds and is used for further 
analysis. The energy of the signal is the sum of the squared 
magnitudes. A typical representation of the vibration signal 
blocked into frames is represented in Figure 1.9. 

 
Figure 1.9: A typical vibration signal blocked into frames 

 
3.2. Frame energy based features 
 To study the change in the energy decay, the following 
frame energy based statistical features namely: kurtosis, root 
mean square, total delta energy and number of slope changes 
are extracted from the signal. 
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3.2.1. Kurtosis (K) 
 The Kurtosis K is defined as the fourth moment of the 
distribution and measure of the size of the tails of 
distribution. The kurtosis feature is extracted using the 
Equation (1.1). 

∑
=

−
= 







N

1i σe
μeie

N
K

4
1

   (1.1) 

where ie  =
thi frame energy, 

μe = overall mean frame energy, 

σe = standard deviation of frame energy and 
N = total number of frames. 
3.2.2. Root Mean Square ( )rmsE  
 The Root Mean Square is the time domain analysis 
feature which is a measure of the power content in the 
vibration signature. The Root Mean Square ( )rmsE is 
calculated using Equation (1.2). 

∑
=

=
N

i ie
NrmsE

1
1

                                        
(1.2)  

where ie = ith frame energy and 
N = total number of frames. 
3.2.3 Total Delta Energy ( )E∆  
 The vibration response is a function of energy decay 
with respect to time. The sum of the change in energy 
between two successive frames in the signal is referred to as 
the total delta energy ( )E∆ and is computed using Equation 
(1.3). 

( )∑
=

−−=∆
1-N

2i ie1ieE
                                    

(1.3) 

where ie = ith frame energy,  
i = frame number and 
N = total number of frames. 
3.2.4 Number of slope changes ( )S∆  
 The vibration response of the frames decays 
exponentially with respect to time. The slope of the energy 
decay depends on the plate condition and hence the frame 
energy values between two successive frames are compared 
and the changes in slope values are computed. If the product 
of two consecutive frame energies is less than zero then it is 
considered as a slope change. The total number of slope 
changes computed from the frame energy values constitutes 
a feature. The equations for computing the number of slope 
changes are expressed in Equations (1.4) and (1.5) 

( )∑ +=
=

2-N

1i ie*1iefS ΔΔΔ
                                            

(1.4) 

( ) ( )
( )





≥+

<+
=+ 0ΔΔ0

0ΔΔ1
ΔΔ

ie*1ie if      
ie*1ie if       

ie*1ief
             

(1.5)
 

ie∆ = change in frame energy of the ith frame and 

( )ie*1ief ΔΔ +  is the slope change. 
Using the frame energy based feature extraction 

method, 12 features are extracted from 1440 normal and 
1440 fault samples. The feature vectors are then associated 
with the condition (normal or fault) of the steel plate. 
 
3.3 Discrete cosine transformation based features 

To study the change in frequency content of the normal 
and damaged conditions, the vibration signal is transformed 
into frequency domain. Discrete cosine transformation is 
applied over the frame energies calculated from the vibration 
signal. The extracted DCT coefficients D are represented in 
Equations (1.6) and (1.7) respectively. A typical 
representation of the discrete cosine transformation 
coefficients are shown in Figure 1.10. 

( )( )( )ED dctabs=     (1.6) 

[ ]ND,,iD,,3D,2D,1D =D    (1.7) 
where Di = ith absolute DCT component and 
N = number of absolute DCT coefficients. 
 

 
Figure 1.10: A typical representation of DCT peak magnitudes and 

frequency indices 
 

The peak values P and its corresponding frequency 
indices f are extracted from the absolute values of the DCT 
coefficients and are represented in Equations (1.8) and (1.9) 
respectively.  

[ ]qp,,ip,,3p,2p,1p =P    (1.8)  

[ ]qf,,if,,3f,2f,1f =f    (1.9) 

where qp,,ip,,3p,2p,1p   
are the peak magnitudes, 

qf,,if,,3f,2f,1f 
 

are corresponding frequency 

indices of the peak magnitudes. 
q = total number of peak magnitudes = total number of 
frequency indices. 
 To effectively study the change in the frequency 
information, the following Discrete cosine transformation 
features are extracted. 

3.3.1. DCT peak moment 
 The DCT peak moment M is the product of the DCT 
peak magnitudes P and its corresponding frequency index f 
and is shown in Equation (1.10). 
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[ ]qqii332211 fp,,fp,,fp,fp,fp =M    
(1.10) 

where M denotes the DCT peak moment and 
q = total number of peak magnitudes = total number of 
frequency indices. 
 Using the DCT peak moment feature extraction 
method, nine features are extracted from 1440 normal and 
1440 fault samples. The feature vectors are then associated 
with the condition (normal or fault) of the steel plate. 
 
3.3.2. Change in DCT peak moment 
 The change in DCT peak moments between successive 
DCT peak moments are calculated using Equations (1.11) 
and (1.12). [ ]1qMiMMMM −∆∆∆∆∆= ,,,,3,2,1 MΔ

     
(1.11) 

where 
( )ifipifipiM −++=∆ 11              (1.12) 

q = total number of moments. 
 Using the change in DCT peak moment feature 
extraction method, nine features are extracted from 1440 
normal and 1440 fault samples. The feature vectors are then 
associated with the condition (normal or fault) of the steel 
plate. 
 
3.3.3 DCT peak value derivative 
 The DCT peak values decays along with their 
frequency indices. The rate of change of DCT peak values 
varies significantly in the steel plates with damages. The rate 
of change of the DCT peak magnitude and the frequency 
indices are extracted using Equation (1.14). [ ]1qΔr,,iΔr,,3Δr,2Δr,1Δr −=   Δr  (1.13) 

where ir∆  = ith peak value derivative coefficient. 

if
ip

ir ∆

∆
=∆

    (1.14) 
where ( )1+−=∆ ipipip  and  (1.15) 

( )ififif −+=∆ 1 .   (1.16) 
 Using the DCT peak derivative feature extraction 
method, nine features are extracted from 1440 normal and 
1440 fault samples. The feature vectors are then associated 
with the condition (normal or fault) of the steel plate. 
 
3.3.4 DCT peak area 
 The successive DCT peak coefficients are connected 
by straight lines. The area swept by the consecutive DCT 
peak moments are computed and used as features to classify 
the normal and faulty steel locations. The area of trapezoids 
A is computed using the base formula (area of the trapezoid) 
shown in Equation (1.18) [ ]1qA,,iA,,3A,2A,1A −= A   (1.17) 

where 









= ihibiA
2

1 ,    (1.18) 

( )ififib −+= 1  and   (1.19) 

( )1++= ipipih     (1.20) 

Using the DCT peak area feature extraction 
method, nine features are extracted from 1440 normal and 
1440 fault samples. The feature vectors are then associated 
with the condition (normal or fault) of the steel plate. 

IV. DATA PREPROCESSING 
The data preprocessing involves labeling of inputs and 

outputs, identification and removal of outliers, feature 
selection, data dimensionality reduction and data 
normalization. The feature matrix is rescaled to a definite 
range using a normalization criterion to improve speed and 
reduce complexity during classification. The input data 
samples are associated with their corresponding output 
vector and fed to the classifier model for classification. To 
represent the normal condition of the steel plate, the input 
features are mapped to ‘0.1’ and to represent the fault 
condition in the steel plate, the input features are mapped to 
‘0.9’. The outlier present in the dataset when unidentified 
distorts the mean and variance which further leads to poor 
classification results. Outliers are removed from the dataset 
using five point summary method. In this research work 
softmax normalization is used.  

 
TABLE 1.1: DIMENSIONALITY REDUCTION FOR SIMPLY 

SUPPORTED 
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Frame energy 12 8 

DCT peak moments 12 10 

Change in DCT peak moment 9 9 

DCT peak value derivative 9 7 

DCT peak area 9 6 
 

TABLE 1.2: DIMENSIONALITY REDUCTION FOR FIXED FREE 
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Frame energy 12 9 

DCT peak moments 12 8 

Change in DCT peak moment 9 6 

DCT peak value derivative 9 8 

DCT peak area 9 9 

 
Principal component analysis is employed to reduce 

dimensionality of the data by identifying principal 
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component features [8]. The principal component features 
are extracted for the simply supported and the fixed free 
experimental methods and are tabulated in Tables 4.5 and 
4.6 respectively. The data is then randomized and the 
training and testing database are formulated. 

 
V.  CLASSIFICATION USING RADIAL BASIS 

FUNCTION NETWORK 

5.1Artificial neural network 
An artificial neural network is an information 

processing system that has been developed as a 
generalization of the mathematical model for human 
cognition [9]. Artificial Neural Networks (ANN) provides 
alternative form of computing that attempts to mimic the 
functionality of the brain [10]. A Radial Basis Function 
(RBF) network model is developed and trained using the 
features extracted from the vibration signal.  

5.2Radial basis function network 
Radial basis function networks are developed to 

classify the condition of the steel plate. The network models 
are trained using the features extracted from the steel plate. 
The radial basis function network consists of three layers 
namely: input layer, hidden layer and output layer. The input 
layer is fed with the feature vectors extracted from the 
vibration signal. The hidden layer also referred to as the 
kernel layer determines the number of kernels. The input 
patterns from the input layer are nonlinearly transformed and 
fed as input to the hidden layer. In the hidden layer, the 
kernels (radial basis functions) are established and the 
weight vectors are governed. The weight vectors are 
adjusted based on the spread factor and the basis function. 
The ‘newrb’ function present in the MATLAB Neural 
network toolbox is used to model and train the RBF models. 
The newrb function iteratively adds one neuron at a time 
until the sum squared error falls behind the error goal or 
until the maximum number of hidden neurons are reached. 
 
5.2.1. Neural network testing and validation 

From the final feature matrix 60%, 70% and 80% 
samples of the total dataset are randomly chosen to train the 
network models. The performance of the network models 
namely the classification accuracy, sensitivity, specificity 
and number of kernels is calculated by validating the 
network with 100% samples of the dataset. During the 
validation of the trained neural network, the actual output is 
compared across the desired output with a testing tolerance. 
In this work, the ‘threshold and margin criterion’ devised by 
Scott E. Falhman [11] is considered. In this method the 
output classes: class1 and class2 are associated to 0.1 and 
0.9 respectively. The threshold value is set in such a way 
that, the output values of the simulated network lying 
between 0 to 0.3 is considered as 0.1 (class1) and output 
values lying between 0.7 to 0.9 is considered to be 0.9 
(class2). The target output values above 0.3 and below 0.7 
are considered ‘marginal’ and are not considered as correct 
during training. The neural network training results are 

tested using this method and are compared with the normal 
testing method. 

VI. RESULTS AND DISCUSSION 
The consolidated training parameters of the RBF 

network models developed for the simply supported and 
fixed free experimental methods are tabulated in Tables 1.3 
and 1.4 respectivey. 

 
TABLE 1.3: COMPARISON OF RBF NETWORK ARCHITECTURE (SIMPLY 
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Spread 0.5 0.5 0.5 0.5 0.5 

Output 
Neurons 1 1 1 1 1 

Goal 0.01 0.01 0.01 0.01 0.01 

Testing 
Tolerance 0.1 0.1 0.1 0.1 0.1 

Testing 
Samples 2764 2795 2746 2800 2782 

 
TABLE 1.4: COMPARISON OF RBF NETWORK ARCHITECTURE (FIXED 

FREE) 

Feature Extraction 
methods 
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Input 
Neurons 9 8 6 9 9 

Spread 0.5 0.5 0.5 0.5 0.5 

Output 
Neurons 1 1 1 1 1 

Goal 0.01 0.01 0.01 0.01 0.01 

Testing 
Tolerance 0.1 0.1 0.1 0.1 0.1 

Testing 
Samples 2814 2804 2798 2810 2776 

 
The RBF network models developed for the simply 

supported and fixed free experimental methods using the 
features extracted from the vibration signals are trained 
iteratively for 25 times per each trail. Five such trials are 
carried out and the minimum, mean and maximum of 
classification accuracy are tabulated in Tables 1.5 and 1.6 
respectively. 
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TABLE 1.5: COMPARISON OF MEAN CLASSIFICATION ACCURACY FOR 
RBF NETWORK MODELS (SIMPLY SUPPORTED) 

Feature 
Extraction 
Methods 

Mean classification accuracy 

Normal testing Falhman testing 

60% 70% 80% 60% 70% 80% 

Frame 
energy 86.08 89.64 91.44 92.74 93.97 95.38 

DCT peak 
moment 88.81 91.17 93.06 92.98 94.04 95.24 

Change in 
DCT peak 
moment 

87.70 89.60 92.45 91.47 92.78 95.24 

DCT peak 
value 
derivative 

87.95 88.35 92.59 92.15 93.47 94.65 

DCT peak 
area 89.81 90.85 92.20 94.15 95.63 97.71 

 
TABLE 1.6: COMPARISON OF MEAN CLASSIFICATION ACCURACY FOR 

RBF NETWORK MODELS (FIXED FREE) 
Feature 

Extraction 
Methods 

 
 

Mean classification accuracy 

Normal testing Falhman testing 

60% 70% 80% 60% 70% 80% 

Frame 
energy 91.07 92.75 93.40 92.30 93.26 95.33 

DCT peak 
moment 89.31 91.13 93.15 92.98 93.47 94.91 

Change in 
DCT peak 
moment 

88.30 88.60 90.08 92.98 94.13 94.77 

DCT peak 
value 
derivative 

90.50 91.61 93.77 95.42 96.06 97.07 

DCT peak 
area 90.88 91.99 94.08 96.06 96.17 98.89 

 
 The minimum, mean and maximum sensitivity 
for the RBF models developed for the simply supported and 
fixed free experimental methods for the feature extraction 
methods are tabulated in Tables 1.7 and 1.8 respectively. 

 
TABLE 1.7: COMPARISON OF MEAN SENSITIVITY FOR RBF NETWORK 

MODELS (SIMPLY SUPPORTED) 

Feature 
Extraction 
Methods 

RBF mean network sensitivity 

Normal Testing Falhman Testing 

60% 70% 80% 60% 70% 80% 

Frame 
energy 86.20 90.16 91.46 93.32 93.88 96.18 

DCT peak 
moment 88.81 91.17 93.06 92.40 93.89 95.16 

Change in 
DCT peak 
moment 

88.00 90.14 92.92 91.81 93.62 95.19 

DCT peak 
value 
derivative 

87.26 88.00 92.70 91.19 93.96 94.20 

DCT peak 
area 90.51 90.56 92.34 94.18 96.25 98.23 

 

TABLE 1.8: COMPARISON OF MEAN SENSITIVITY FOR RBF NETWORK 
MODELS (FIXED FREE) 

Feature 
Extraction 
Methods 

RBF mean network sensitivity 

Normal Testing Falhman Testing 

60% 70% 80% 60% 70% 80% 

Frame 
energy 91.25 93.34 93.80 92.41 93.45 96.13 

DCT peak 
moment 89.96 91.15 93.30 93.81 93.83 95.67 

Change in 
DCT peak 
moment 

88.60 89.24 90.20 92.98 94.13 94.77 

DCT peak 
value 
derivative 

90.00 91.23 93.15 95.16 95.87 97.35 

DCT peak 
area 91.08 92.84 94.30 97.41 96.78 99.82 

 
The minimum, mean and maximum specificity for 

the RBF models developed for the simply supported and 
fixed free experimental methods for the feature extraction 
methods are tabulated in Tables 1.9 and 1.10 respectively. 

 
TABLE 1.9: COMPARISON OF MEAN SPECIFICITY FOR RBF NETWORK 

MODELS (SIMPLY SUPPORTED) 

Feature 
Extraction 
Methods 

RBF mean network sensitivity 

Normal Testing Falhman Testing 

60% 70% 80% 60% 70% 80% 

Frame 
energy 85.98 89.12 91.43 92.16 93.24 94.58 

DCT peak 
moment 88.68 91.01 93.15 92.15 93.11 94.15 

Change in 
DCT peak 
moment 

87.58 89.08 91.98 91.13 91.94 95.29 

DCT peak 
value 
derivative 

88.64 88.70 92.48 93.11 93.98 95.10 

DCT peak 
area 89.11 91.14 92.06 94.12 95.01 97.20 

 
TABLE 1.10: COMPARISON OF MEAN SPECIFICITY FOR RBF NETWORK 

MODELS (FIXED FREE) 

Feature 
Extraction 
Methods 

RBF mean network sensitivity 

Normal Testing Falhman Testing 

60% 70% 80% 60% 70% 80% 

Frame 
energy 90.89 92.16 93.00 92.19 93.07 94.53 

DCT peak 
moment 88.66 91.01 93.00 92.15 93.11 94.15 

Change in 
DCT peak 
moment 

87.00 88.96 89.98 92.17 93.82 94.16 

DCT peak 
value 
derivative 

91.00 91.99 94.39 95.68 96.25 96.79 

DCT peak 
area 90.68 91.14 93.86 94.71 95.53 97.96 
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The minimum and maximum number of mean 
kernels for RBF models developed for the simply supported 
and fixed free experimental methods for the feature 
extraction methods are tabulated in Tables 1.11 and 1.12 
respectively. 

 
TABLE 1.11: COMPARISON OF MEAN KERNELS FOR RBF MODELS (SIMPLY 

SUPPORTED) 

Feature Extraction Methods 
Training Samples 

60% 70% 80% 

Frame energy 560 583 602 

DCT peak moment 524 550 600 

Change in DCT peak moment 540 554 616 

DCT peak value derivative 606 636 679 

DCT peak area 603 642 691 

 
TABLE 1.12: COMPARISON OF MEAN KERNELS FOR RBF MODELS (FIXED 

FREE) 

Feature Extraction Methods 
Training Samples 

60% 70% 80% 

Frame energy 512 527 552 

DCT peak moment 525 536 579 

Change in DCT peak moment 552 554 573 

DCT peak value derivative 472 523 560 

DCT peak area 576 607 632 

VII. CONCLUSION AND FUTURE WORK 
This paper presented two simple experimental 

methods based on nondestructive experimental model 
analysis to extract vibration signals from the steel plate. 
Feature extraction algorithms based on time and frequency 
domain methods were developed to extract features from the 
recorded vibration signals. The features were then associated 
with the condition of the steel plate to form the final feature 
matrix. Radial basis network models were developed and 
trained to classify the condition of the steel plate. The results 
show that the network models developed using the fixed free 
experimental models perform better classification compared 
to the simply supported experimental method. The Falhman 
testing method provides better classification results 
compared to the normal testing method. Furthermore, the 
RBF network models developed and trained using the DCT 
peak are method provide better classification results in both 
the experimental methods. 
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