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Abstract - This paper discusses the application of frame energy
based DFT spectral band features for the detection of damages in
steel plates. A simple experimental model is devised to suspend
the steel plates in a free-free condition. Experimental modal
analysis methods are analyzed and protocols are formed to
capture vibration signals from the steel plate using
accelerometers when subjected to external impulse. Algorithms
based on frame energy based DFT spectral band feature
extraction are developed and prominent features are extracted.
A Probabilistic Neural Network is modeled to classify the
condition of the steel plate. The output of the network model is
validated using Falhman testing criterion and the results are
compared.
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I. INTRODUCTION

Damage can be defined as the changes introduced into a
system that brings adverse effects in the present and future
performance. Damage becomes expressive when it is
compared between two different states of the system. Cracks
are well-defined as any unintentional discontinuities in the
shaft material. The occurrence of the faults or damages in the
structures is quite unavoidable mainly due to environmental
conditions, improper handling, poor maintenance and wear
and tear. A detailed comprehensive survey on the
nondestructive measuring techniques has been dealt by
Brinksmeier [1]. Dimarogonas [2] presented a detailed review
on nondestructive testing to detect and monitor cracks in
beams, plates, rotors, and turbine plates. An extensive
literature review of the state of art vibration analysis and
damage detection has been published by S.W. Doebling [3]. A
detailed survey of the state of art in the damage detection field
using modal analysis has been presented by Richardson [4]. A
detailed review of the different vibration and acoustic
methods such as the time and frequency domains, acoustic
emission techniques are presented by Tandon and Nakra [5].
Using fracture mechanics method, Dimarogonas [2] and
Anifactis [6] computed the equivalent stiffness and developed
a model for crack detection in beams. An experimental
technique to estimate the location and depth of a crack in a
beam has been developed by Adams and Cawley [7]. The
methodology of crack detection based on natural frequency
changes has been closely studied by Shen and Pierre [8].

The nondestructive approach is engaged towards the
identification of the damages in the steel plate. Non
Destructive Testing (NDT) can be defined as the study of the
impulse response of a system due to an external excitation that
confronts the dynamic nature of the system under test. The
vibration signal is recorded from the system when it is
subjected to an external excitation. The presence of damage in
the system is studied by closely studying the vibration pattern

at an instance. The vibration pattern carries the dynamic
characteristics of the system such as fundamental frequency,
damping ratio and mode shape.

In this paper, the vibration signal emanated from the
steel plates excited by impulse signals are captured and
analyzed. The dominant features from the vibration signals are
extracted and a neural classifier is modeled to classify the
condition of the steel plate.

II. METHODS AND MATERIALS

Experimental Modal Analysis (EMA) is defined as a
process of acquiring acceleration response data (excitation of
the structure using external force and obtaining the response
to the force) and identification of the modal parameters [9]. A
cold rolled steel plate of size 90cm length and 60cm width and
of thickness 2mm and mass 1.2 kg is considered for this study.

An experimental structure to hold the stainless steel plate is
fabricated where one side of the plate is hinged at the longer
ends and the other end is set free. A swing frame structure is
constructed using hollow iron pipes of width 3 feet and height
5 feet. The steel plate is hung (fixed-free condition) in
equilibrium state using two adjustable hinges. The hinges are
placed 30 cm apart from each other to balance the weight of
the steel plate and to avoid over damping during the
experiment. The hinges are screwed intact to avoid absorption
of the vibration signals when the steel plate is under excitation
mode. The swing frame arrangement is positioned on the floor,
so that it is free from external vibration sources. The Fixed
Free swing frame arrangement is depicted in Figure 1.

Figure 1: Fixed (Hinged) free steel plate

Using EMA, the vibration study can be performed in
x, y and z planes Since the steel plate is an isotope, the
characteristics of the vibration response in all three planes is
similar, Hence the experimental design is developed to study
the vibration response of the steel plate in x-y plane.

A. Roving hammer test



In this roving hammer testing procedure, the
structure under test is mounted on the experimental setup. The
accelerometers locations are evenly distributed over the
structure. An impulse signal is generated on the structure by
striking the impact hammer at different locations and
observing the vibration acceleration pattern at different
locations. The location of strike of the impact hammer is
randomly selected. The number of accelerometers used in this
test depends on the dimensions of the structure and the
location of interest. Figure 2 depicts the roving hammer test
where the location of the impact hammer is changed during
every test while the accelerometers are placed intact in the
numbered locations

B. Roving accelerometer test
The roving accelerometer test is similar to the roving

hammer test. In this test the structure under test is mounted on
the experimental setup and the location of strike of the impact
hammer is fixed. The accelerometers are placed at even
locations on the structure. The location of excitation is fixed at
the same place throughout the test, while the accelerometer
locations are changed during every trial of the test. The
accelerometer roving test is shown in Figure 3.

Figure 2: Roving hammer test

Figure 3: Roving accelerometer test

C. Materials and Protocol Design
The data collection protocol is the set of methods or

rules framed to ensure the consistency of the measured
vibration signals throughout the data collection process. The
steel plate is divided into 6 rows and 15 columns. The area of
the cell is 4 cm2 and the cells are numbered sequentially from
1 to 36. An experimental protocol is designed based on both
the roving hammer and roving accelerometer tests. The
accelerometers are mounted over the corners of the cells based
on the protocol design shown in Figure 4.

Figure 4: Experimental protocol design

An impulse is generated when the impact hammer
strikes over the location on the steel plate. The accelerometers
capture the vibration signal connected to the Data Acquisition
System (DAQ). The experiment is carried out on all the 36
cells and 144 possible combinations of the 4 protocols by
changing the positions of the accelerometers and the impact
hammer. The recorded signals are sequentially numbered and
saved.

Small micro damages of size 531 μm to 1870 μm are

created throughout the steel plate inside the 36 cells and the
data collection is carried out for all the locations. The
experimental data is collected at various locations of the steel
plate under normal and fault conditions. The experiment is
repeated and the vibration signal is obtained from 10 steel
plates of similar dimensions. Thus 1440 samples are captured
and recorded for normal conditions. Similarly 1440 samples
for fault conditions are collected after drilling small holes on
the steel plates. The data collected is stored in the native
‘XLF’ file format supported by the DAQ. The files are later
converted into ‘WAV’ file format for further processing
through MATLAB.

III. FEATURE EXTRACTION

The vibration signals are captured using an
experimental protocol from the steel plate at a sampling rate
of 4 kHz [10]. The vibration signal is recorded for 20 seconds
during the impact test. The time ‘tp’ corresponding to the first
peak magnitude ‘vp’ is identified and the signal recorded from
(tp – 0.5) seconds to (tp + 14.5) seconds is trimmed for 15
seconds to maintain uniformity throughout the analysis. The
trimmed signal is then segmented into definitive frames of
size 1024. The representation of the blocked frames is shown
in Figure 5.

Figure 5. Vibration signal blocked into frames

A. Frame Energy
The total energy of a signal is defined as the sum of

the squared magnitudes of the signal components. The law of
conservation of energy states that, the energy can neither be
created nor be destroyed, but can be transformed from one
form to another. This law applies to this problem domain,



where the energy in the form of mechanical force exerted by
the impulse hammer is distributed all over the steel plate as
vibration pattern. The energy in the form of vibration is
affected by the damages present in the steel plate. The energy
of the frame is calculated by computing the sum of the
squared magnitudes of each frame. The Energy E of the signal
is given by

 Ni321 e,,e,,e,e,e E
(1)

where ie is the frame energy in the thi frame and it is
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Figure 6: Typical Frame energy of normal and fault signals

A typical frame energy of a normal and faulty signa

is shown in Figure 6.

B. DFT Spectral band feature extraction
The vibration signals recorded during the experiment

poses time domain information. The signal is transformed
from time domain into frequency domain using Fourier
transformation. DFT transforms the time domain signal into
frequency domain. Applying Fast Fourier transformation to
the vibration signal, the DFT coefficients are observed. The
absolute value of the DFT coefficients are computed and
plotted. The frequency spectral response gives the frequency
information of the vibration signals. The absolute DFT
coefficients are represented in Equation (3).  By observing the
occurrence of the peak values in the frequency spectrum plot,
the spectral bands for the fixed free condition are obtained and
are tabulated in Table 1.

 zrirrrr ,,,,3,2,1 R (3)

where ri = ith absolute DFT spectral coefficient.

The DFT spectrum of the vibration signals in both
normal and fault conditions are depicted in Figures 7.

Figure 7:Frequency spectrum

TABLE I. FREQUENCY SPECTRAL BANDS

Band
No

Frequency
Range

Band
No

Frequency
Range

Band 1 6 Hz – 11 Hz Band 10 114 Hz – 127 Hz

Band 2 15 Hz – 19 Hz Band 11 130 Hz – 144 Hz

Band 3 22 Hz – 28 Hz Band 12 144 Hz – 152 Hz

Band 4 35 Hz – 49 Hz Band 13 153 Hz – 166 Hz

Band 5 52 Hz – 58 Hz Band 14 166 Hz – 176 Hz

Band 6 65 Hz – 75 Hz Band 15 180 Hz – 202 Hz

Band 7 75 Hz – 81 Hz Band 16 204 Hz – 223 Hz

Band 8 88 Hz – 101 Hz Band 17 228 Hz – 238 Hz

Band 9 101 Hz – 114 Hz Band 18 238 Hz – 250 Hz

The DFT is calculated for the vibration signal using
FFT method and the absolute values in the frequency
spectrum are plotted. The spectrum is visually inspected for
the peak spectral band frequencies and the spectral bands are
formulated. The possible common occurrences of the spectral
bands per each vibration channel are identified. 18 spectral
bands for both normal and fault conditions are identified and
tabulated in Table I. The sum of the squares of the defined
spectral band coefficients are computed and used as features.
The obtained spectral band features from all the three
channels and combined to form a feature sample. The
procedure is repeated for all the 1440 normal vibration signals
and 1440 fault vibration signals to form the final feature
matrix of size 2880 x 54 in fixed free method.

In the experimental method 54 features are extracted
from 1440 normal samples and 1440 fault samples. The
feature vectors are then associated with the condition (normal
or fault) of the steel plate.

IV. CLASSIFICATION

Artificial Neural Networks are widely used for
pattern classification. In this research work, a Probabilistic
Neural Network Classifier [11] is modeled to classify the
condition of the steel plate. The features extracted from the
vibration signal are provided as input and the condition of the
steel plate as output to the neural network.

The features extracted from three accelerometer
channels constitute a feature sample. The features are
extracted from the steel plates in both the normal and fault
conditions. The database consists of 2880 samples (1440
normal and 1440 fault samples).

The extracted features are further processed to
remove outliers. The features are labeled and then associated
with condition of the steel plate. The dataset is normalized and
the principal components are identified and the data
dimensionality is reduced.

In the original dataset, the columns 1,2,3,4 contain
the DCT moment information of Accelerometer 1, columns
5,6,7,8 contain the DCT moments of Accelerometer 2 and
columns 9,10,11,12 contain the DCT moments of the
Accelerometer 3.

A. Training: The Probabilistic Neural Network (PNN) is a
variant of Radial basis function network. The processed



features contain the input – output association. The network
model contains three layers namely input, hidden and output.
The input layer is provided with the feature vectors which
constitutes the input neurons to the network. The output layer
is associated with the target vectors corresponding to the input
vectors. The spread factor and the goal are chosen. The
maximum number of kernels is observed during the training.
The ‘newrbe’ function available in MATLAB neural network
toolbox is used to model, train and simulate the probabilistic
neural network. The dataset is divided into training samples of
60%, 70% and 80% samples.
B. Testing: The trained network model is tested and validated
against the 100% testing samples which include unseen inputs
by the trained network. The network is tested with normal
method and the ‘threshold and margin criterion’ proposed by
Falhman [13].

V. RESULTS AND DISCUSSION

The training parameters of the PNN model are
explained as shown in Table 2. The PNN model is trained and
the results are validated in both normal method and Falhman
method. The results of the trained network: mean
classification accuracy, mean sensitivity, mean specificity and
kernels are tabulated in Table 3.

TABLE 2: PNN Training Parameters

Input Neurons:
Spread:

Output Neurons:
Goal

Testing Tolerance:

54
0.5
1
0.01
0.1

TABLE 3: PNN Training Results

Normal Testing Falhman Testing

60% 70% 80% 60% 70% 80%

Mean
Classification
Accuracy

92.88 94.27 95.71 98.39 99.05 99.67

Mean
Sensitivity 93.54 94.36 96.14 99.02 98.94 99.71

Mean
Specificity 93.22 94.18 95.28 97.16 98.46 99.83

Kernels 835 875 934 835 875 934

The results show that 80 percent data samples
produce better results compared to 60 percent and 70 percent
samples. Though the larger the number of samples, the more
the complexity and weighted connections of the network.

CONCLUSION

In this work, an experimental framework was
developed based on the non-destructive testing and
experimental modal analysis to hold the steel plate. A simple
protocol based on the roving hammer and roving
accelerometer tests were designed to perform impact testing
and capture the vibration signal from the steel structure.
Frame Energy based DFT spectral band features were
extracted using algorithms from the vibration signals. Data
preparation methods were developed to formulate the feature
vectors for classifier models. Probabilistic Neural Network
was modeled to classify the condition of the steel structure.
The results of the network model were validated against the
Falhman criterion and the results with the conventional
network model were compared.
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